Statistical Inference Test Set 3

- 1. Let $X_1, X_2, ..., X_n$ be a random sample from a population with density function $f(x) = \frac{x}{\theta} \exp\left\{-\frac{x^2}{2\theta}\right\}, \quad x > 0, \theta > 0.$ Find FRC lower bound for the variance of an unbiased estimator of θ . Hence derive a UMVUE for θ .
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from a discrete population with mass function

$$P(X = -1) = \frac{1-\theta}{2}, P(X = 0) = \frac{1}{2}, P(X = 1) = \frac{\theta}{2}, 0 < \theta < 1.$$

Find FRC lower bound for the variance of an unbiased estimator of θ . Show that the variance of the unbiased estimator $\overline{X} + \frac{1}{2}$ is more than or equal to this bound.

- 3. Let $X_1, X_2, ..., X_n$ be a random sample from a population with density function $f(x) = \theta(1+x)^{-(1+\theta)}, x > 0, \theta > 0$. Find FRC lower bound for the variance of an unbiased estimator of $1/\theta$. Hence derive a UMVUE for $1/\theta$.
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from a Pareto population with density $f_X(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x > \alpha, \alpha > 0, \beta > 2$. Find a sufficient statistics when (i) α is known, (ii) when β is known and (iii) when both α, β are unknown.
- 5. Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma (p, λ) population. Find a sufficient statistics when (i) p is known, (ii) when λ is known and (iii) when both p, λ are unknown.
- 6. Let $X_1, X_2, ..., X_n$ be a random sample from a Beta (λ, μ) population. Find a sufficient statistics when (i) μ is known, (ii) when λ is known and (iii) when both λ, μ are unknown.
- 7. Let $X_1, X_2, ..., X_n$ be a random sample from a continuous population with density function

$$f(x) = \frac{\theta}{(1+x)^{1+\theta}}, \quad x > 0, \theta > 0.$$
 Find a minimal sufficient statistic.

- 8. Let $X_1, X_2, ..., X_n$ be a random sample from a double exponential population with the density $f(x) = \frac{1}{2}e^{-|x-\theta|}$, $x \in \mathbb{R}$, $\theta \in \mathbb{R}$. Find a minimal sufficient statistic.
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from a discrete uniform population with pmf $p(x) = \frac{1}{\theta}, x = 1, ..., \theta$, where θ is a positive integer. Find a minimal sufficient statistic.

- 10. Let $X_1, X_2, ..., X_n$ be a random sample from a geometric population with pmf $f(x) = (1-p)^{x-1}p$, x = 1, 2, ..., 0 . Find a minimal sufficient statistic.
- 11. Let X have a $N(0, \sigma^2)$ distribution. Show that X is not complete, but X^2 is complete.
- 12. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential population with the density $f(x) = \lambda e^{-\lambda x}, x > 0, \lambda > 0$. Show that $Y = \sum_{i=1}^n X_i$ is complete.
- 13. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential population with the density $f(x) = e^{\mu x}, x > \mu, \mu \in \mathbb{R}$. Show that $Y = X_{(1)}$ is complete.
- 14. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\theta, \theta^2)$ population. Show that (\overline{X}, S^2) is minimal sufficient but not complete.

Hints and Solutions

1.
$$\log f(x|\theta) = \log x - \log \theta - \frac{x^2}{2\theta}$$
.
 $E\left(\frac{\partial \log f}{\partial \theta}\right)^2 = E\left(\frac{X^2}{2\theta^2} - \frac{1}{\theta}\right)^2 = \frac{E(X^4)}{4\theta^4} - \frac{E(X^2)}{\theta^3} + \frac{1}{\theta^2} = \frac{8\theta^2}{4\theta^4} - \frac{2\theta}{\theta^3} + \frac{1}{\theta^2} = \frac{1}{\theta^2}$.
So FRC lower bound for the variance of an unbiased estimator of θ is $\frac{\theta^2}{n}$.
Further $T = \frac{1}{2n} \sum X_i^2$ is unbiased for θ and $Var(T) = \frac{\theta^2}{n}$. Hence T is UMVUE for θ .
2. $E(X) = \theta - \frac{1}{2}$. So $T = \overline{X} + \frac{1}{2}$ is unbiased for θ . $Var(T) = \frac{1+4\theta-4\theta^2}{4n}$.
 $\frac{\partial}{\partial \theta} \log f(x|\theta) = \begin{cases} (\theta-1)^{-1}, & x=-1\\ 0, & x=0 \end{cases}$ So we get $E\left(\frac{\partial \log f}{\partial \theta}\right)^2 = \frac{1}{2\theta(1-\theta)}$.
The FRC lower bound for the variance of an unbiased estimator of θ is $\frac{2\theta(1-\theta)}{n}$.
It can be seen that $Var(T) - \frac{2\theta(1-\theta)}{n} = \frac{(1-2\theta)^2}{4n} \ge 0$.
3. We have $\frac{\partial}{\partial \theta} \log f(x|\theta) = \frac{1}{\theta} - \log(1+x)$. Further, $E\{\log(1+X)\} = \theta^{-1}$, and $E\{\log(1+X)\}^2 = 2\theta^{-2}$. So $E\left(\frac{\partial \log f}{\partial \theta}\right)^2 = \frac{1}{\theta^2}$, and FRC lower bound for the variance of $u = \frac{1}{n} \sum \log(1+X_i)$ is unbiased for θ^{-1} and $Var(T) = \frac{\theta^2}{n}$.

- 5. Using Factorization Theorem, we get sufficient statistics in each case as below (i) $\sum_{i=1}^{n} X_i$, (ii) $\prod_{i=1}^{n} X_i$ (iii) $\left(\sum_{i=1}^{n} X_i, \prod_{i=1}^{n} X_i\right)$
- 6. Using Factorization Theorem, we get sufficient statistics in each case as below

(i)
$$\prod_{i=1}^{n} X_{i}$$
, (ii) $\prod_{i=1}^{n} (1-X_{i})$ (iii) $\left(\prod_{i=1}^{n} X_{i}, \prod_{i=1}^{n} (1-X_{i})\right)$

7. Using Lehmann-Scheffe Theorem, a minimal sufficient statistic is $\prod_{i=1}^{n} (1+X_i)$.

8. Using Lehmann-Scheffe Theorem, a minimal sufficient statistic is the order statistics $(X_{(1)}, ..., X_{(n)})$.

- 9. Using Lehmann-Scheffe Theorem, a minimal sufficient statistic is the largest order statistics $X_{(n)}$.
- 10. Using Lehmann-Scheffe Theorem, a minimal sufficient statistic is $\sum_{i=1}^{n} X_i$.
- 11. Since E(X) = 0 for all $\sigma > 0$, but but P(X = 0) = 1 for all $\sigma > 0$. Hence X is not complete. Let $W = X^2$. The pdf of W is $f_W(w) = \frac{1}{\sigma\sqrt{2\pi w}}e^{-w/2\sigma^2}, w > 0$. Now $E_{\sigma}g(W) = 0$ for all $\sigma > 0 \Rightarrow \int_0^{\infty} g(w)w^{-1/2}e^{-w/2\sigma^2}dw = 0$ for all $\sigma > 0$. Uniqueness of the Laplace transform implies g(w) = 0 a.e. Hence X^2 is complete.
- 12. Note that $Y = \sum_{i=1}^{n} X_i$ has a Gamma (n, λ) distribution. Now proceeding as in Problem 11, it can be proved that *Y* is complete.

13. Note that the density of
$$Y = X_{(1)}$$
 is given by $f_Y(y) = n e^{n(\mu - x)}, x > \mu, \mu \in \mathbb{R}$.
 $Eg(Y) = 0$ for all $\mu \in \mathbb{R}$
 $\Rightarrow \int_{\mu}^{\infty} n g(y) e^{n(\mu - y)} dy = 0$ for all $\mu \in \mathbb{R}$
 $\Rightarrow \int_{\mu}^{\infty} g(y) e^{-ny} dy = 0$ for all $\mu \in \mathbb{R}$
Using Laborator integration theory we conclude that $g(y) = 0$ as a Hence Y

Using Lebesgue integration theory we conclude that g(y) = 0 a.e. Hence Y is complete.

14. Minimal sufficiency can be proved using Lehmann-Scheffe theorem. To see that (\overline{X}, S^2) is not complete, note that $E\left(\frac{n}{n+1}\overline{X}^2 - S^2\right) = 0$ for all $\theta > 0$. However, $P\left(\frac{n}{n+1}\overline{X}^2 = S^2\right) = 0$.